
Components as Resources and Cooperative
Action

Hans-Gert Gräbe

InfAI, Leipzig University, Leipzig, Germany
graebe@infai.org

Abstract. The concept of systems and problem solving are central to
TRIZ. Solving a problem along TRIZ ends in a certain conditional mind
game that requires implementation and operation to ”change the world”
along the proposed solution. In [5] the question is examined more closely
how real-world problem solving and resource exploitation emerge from
such a ”conditional mind game”. Different to resource concepts wide-
spread in TRIZ it turns out that in modern high-tech worlds, qualitative
and quantitative determinacy as specification is becoming increasingly
important for the selection, search and preparation of resources to pro-
vide couplings between systems in coordinated cooperative action. While
the explanation in [5] focuses on a company internal context, the same
question is examined here for cooperative action involving independent
third parties.

Keywords: systemic approach, specification, resource, operating condi-
tions, interfaces, components, component models, services.

1 Introduction

Besides the orientation towards contradictions, the systemic approach is one of
the central concepts of TRIZ. In contrast to more diffuse concepts such as an
”orientation towards the needs of the user” (as in Design Thinking, [14]) or a
little-conditioned ”brainstorming” [15], this achieves a focussing of the modelling
in the problem solving process and later a concentration on a spatio-temporally
more narrowly defined operative zone, such as in the ProHEAL Path Model [3]
or in the classic ARIZ-85C.

The concept of a (description of a) system in TRIZ [13, p. 17], [21] is oriented
towards an emergent function as main useful function, which emerges not from
functionalities of a single component in the system but from their interaction in
the systemically delimited context. The three delimitations required for this [4,
p. 3],

– an external demarcation of the system against an environment,

– an internal demarcation of the system against components and

– a reduction of the relationships between the components in the system itself
to causal essential ones,



adjust exactly the right degree of abstraction that is needed for successful prob-
lem solving.

TRIZ as a ”whiteboard technology” pays little attention to the phase of
implementing the solution itself. But ”dreaming up a process on a whiteboard
is one thing, making it happen quite another” as pointly remarked by Howard
Smith [17]. At the theoretical-mental level the solution of an engineering or
management problem remains a conditional mind game: if certain operational
requirements are met, then the implementation of the proposed solution also
achieves what is required in practical operation.

For this to happen, however, the thing previously delimited as a system at
the whiteboard must be inserted back in the context of a ”living world” at the
place from which it was previously ”cut out” for analytical reason. This context
consists of ”living” components and a ”living” environment as pointed out in
[16, p. 98]. Due to the self-similarity of the systemic concept both parts – the
thing to be inserted and the target – can be considered as systemically structured
themselves if we assume the universality of the principle of a systemic structure
of a highly technical world that is increasingly developing based on planning.

However, this does not only raise the question of a systemic solution of a
delimitable problem up to that ”conditional mind game” (Shchedrovitsky calls
this a first concept of a system [16, p. 89]). It also poses the questions not only of
the implementation, but also of the integration of that solution into the structures
and order of the living world. At this point the fundamental contradiction of
every systemic solution manifests itself – the contradiction between the necessity
to decompose it for analytical purposes and the indecomposability of the system
in operational mode. ”An aeroplane consists of many parts. None of them can
fly, not even the sum of all parts. Only the aeroplane in assembled mode can
fly, can be operated.” This rephrases an example given in [13, ex. 1.7]. But this
indecomposability in operation does not end at the boundary of the system,
because the aeroplane needs fuel for its engines and an ”airy” environment to
fly. On the moon, a terrestrial aircraft would be of little use. In [5] using the
words of Shchedrovitsky it is expressed even more pointedly: ”The thing viewed
with the magnifying glass as a connection of place and content remains a ’dead
body’, because ’a living being has no parts’” [16, p. 91].

So it is a matter of bringing the ”dead body” to life, embedding it in a
”living” systemic context and thus systemically evolving also that context itself
as a ”living system”, because after integration a function is available there that
was not available before.

In the concept of systemic composition to be developed (Shchedrovitsky calls
this a second concept of a system [16, p. 98 ff.]), the concept of resources plays a
central role. In the development of a system of the first kind up to that ”condi-
tional mind game”, this future composition requirement must of course already
be taken into account.

The (evolutional) development of a whole in a mode of production that is
characterised by a deep division of labour is only possible based on cooperative
action of differently qualified actors. The technical question of providing suitable



resources and especially tools (i.e., components with a main useful function) and
workpieces (i.e., the objects to be processed by those tools) thus becomes a
socio-culturally embedded socio-technical task.

In [5] this question is analysed in more detail and the role of component mod-
els and component frameworks is elaborated for such composition in addition to
components, especially in the field of Software Engineering. However, the argu-
mentation there was limited to a division of labour approach within a company
as a specific form of institutionalisation of cooperative action.

In this paper, it will be analysed in more detail which further dimensions open
up for such composition in a system concept of second kind if this cooperative
action includes collaborations of independent third parties such as developers
and users, manufacturers and customers, etc.

2 ”Components are for Composition”

This central formula runs through the entire book Component Software [20] of
Szyperski. He points out that for the operational insertion of a systemic solution
as ”conditional mind game” into its real-world ”living” context, the view of the
system as a component is essential, even if the ”supersystem” remains vague, in
which the system as a component has to prove itself operationally.

The interaction between ”place” and ”content”, which is described in more
detail in [5] and has to be organised practically for the commissioning of the
component, is essentially described by specifications of input and output inter-
faces. At the input interfaces, specification-compliant operating resources must
be provided, so that the component itself really can deliver its service according
to its own output specification and thus being useful as a resource for others.

Such a distinction between interface specification as a ”place” and filling this
”place” with a suitable resource as ”content” is well known in the field of human
resources with the concept of roles. Within the framework of a Business Process
Modelling [2], roles are defined and afterwards to be filled by suitable human
resources. In socio-technical systems, e.g. organisations, such role definitions have
a broader structure:

– A role is a bundle of necessary experience, knowledge and skills that an
employee must have in order to perform a certain activity.

– Roles are defined by role descriptions within a role model.
– A role is associated with activities and responsibilities.
– Qualification characteristics are required to perform a role.
– A person can have several roles. Several persons can have the same role.

It is clear that such structural concepts can easily be transferred to other
types of resources. As noted above especially components and their output play
a role as resources for other, causally and temporally subsequent structures and
processes, these structural concepts must also be applied to components when
it comes to their ”composition”.



Sommerville emphasises the importance of interface specification for the de-
velopment of software systems that use existing components (COTS – Commer-
cial off the Shelf) or for large systems to be developed in a cooperative process
and require a decomposition into subsystems to be developed independently of
each other [18, ch. 10.2].

Such component-based development scenarios are of growing importance over
the last 20 years and developed to an established approach in software engineer-
ing. With the transition to such component architectures, software engineering
has taken a turn to a development mode which is characteristic for other en-
gineering domains for a long time already. Many of the phenomena compiled
here from the perspective of software technology thus have a broader scope of
validity and ultimately distinguish craftsmen from engineering approaches. In
this way systemic development manifests itself as a concurrent process of paral-
lel in time developments and unfolding of subsystems, which is controlled by a
socio-technical supersystem of project coordination.

Sommerville [18, p. 477] emphasises that this development process in turn
requires a more extensive socio-technical infrastructure with

1. independent components that can be fully configured via their interfaces,
2. standards for components that simplify their integration,
3. a middleware, which supports the component integration with software
4. and a development process that is designed for component-based software

engineering.

Components are thus conceptually integrated into an overarching component
model, which essentially ensures the technical interoperability of different com-
ponents beyond concrete interface specifications and thus forms a moment of the
whole in the diversity of the components.

This unified model is not only a conceptual envelope, but also a practical one
since the middleware directly provides a certain ”general” part of the operating
conditions, and also the practical development process of such components is
significantly influenced by the standardised patterns of the respective component
model. The last aspect is particularly emphasised in the survey [1]

A component model specifies the standards and conventions imposed
on developers of components. Compliance with a component model is
one of the properties that distinguish components (as we use the term)
from other forms of packaged software. A component framework is an
implementation of services that support or enforce a component model.
Both are examined more closely, below. [1, p. 23]

The authors of that study on the state of Component Based Software Engineering
(CBSE) initiated in 2000 by the SEI at the CMI emphasise the general root of
every component-composition approach:

The parts that we compose are, etymologically speaking, components.
Why this pedagogy? Because, by definition, all software systems com-
prise components. These components result from problem decomposition,



a standard problem-solving technique. In the software world, different
conceptions about how systems should be organised result in different
kinds of components. Thus, two systems may comprise components, but
the components may have nothing more in common than the name ”com-
ponent”. The phrase component-based system has about as much inher-
ent meaning as ”part-based whole”. [1, p. 1]

But the existence of component models and component frameworks based on
them points to essential inner connections and cooperative potentials of such
”problem-solving techniques” and overarching concepts, which structure and
simplify problem-solving and hence impose structure on the part-whole relation.

And the reverse is also true: Consolidated experiences from the develop-
ment processes of components used in the real world form the basis for the
further development of the component model. This frame constitutes as compo-
nent framework [20, ch. 9] a socio-technical supersystem as an ”environment” of
components that were created according to the (abstract) specifications of that
component model.

Szyperski, for his part, analyses in [20] this diversity of compatibilities and
incompatibilities of different component models and identifies different levels of
abstraction for the reuse of concepts that go beyond the use of prefabricated
components. In his 20-year-old book he already emphasises

the growing importance of component deployment, and the relationship
between components and services, the distinction of deployable com-
ponents (or just components) from deployed components (and, where
important, the latter again from installed components). Component in-
stances are always the result of instantiating an installed component –
even if installed on the fly. Services are different from components in that
they require a service provider. [20, p. xvii]

3 Components and Third Parties. The Open Source
Practice

Different to [5] below it is examined how components from different mutually
independent sources can be integrated into a system. It is less about the ”condi-
tional mind game” of writing the code than about bringing together the necessary
”living” components as resources to form a ”living” system.

This is particularly easy in the software sector, because ”software is differ-
ent from products in all other engineering disciplines. Rather than delivering a
final product, delivery of software means delivering the blueprints of products.
Computers can be seen as fully automatic factories that accept such blueprints
and instantiate them.” [20, p. 8]

In the end, it is not quite that simple, since the components as program code
(even if availably already in binary form) are the different processual descrip-
tions that must be brought together and executed on an operating unit (e.g. a
computer) that itself operates a specific operating system. But such a situation



is quite typical also for modern material production environments since a com-
puter as part of the ”automatic factory of control” of a real, ”living” factory
as supersystem – and within that supersystem extended by appropriate sensors
and actuators – forms the core of modern ”complete technical systems” in the
sense of TRIZ.

In order to operate this control unit in practice, the software has to be ”built”,
i.e. the ”places” of its components (the ”dependencies” in the IT developers’ lan-
guage) must be filled with appropriate ”content” to obtain a running (”living”)
software as a whole. For this appropriate ”living” components as resources are to
be allocated. In the simplest case, such a resource is itself a piece of software, but
not ”anything in or around the system that is not being used to its maximum
potential” [11] as D. Mann defines the concept of a resource. At this ”place” a
resource is required that exactly serves a qualitatively and quantitatively well-
defined specification.

If such a resource is to be obtained from an independent third party, a (so-
cial) supply relationship must first be established. If we restrict ourselves to the
technical dimension of such a relationship, firstly place and time of availability
and provision of the component are to be negotiated. For software, this is not
much of a problem today with the networked structure of the internet – one may
download the resource from a suitable place.

For this purpose, even a decentralised system of provision of such ”living”
components can be built if there is a central place – at least virtually central
as Google – where the information about all available software components is
located and can be retrieved. In the following we describe such a system for
components of a certain kind – to ensure a minimal level of compatibility –,
for components written in Java. This serves as a mere example since similar
distribution systems for components, i.e., technical equipment of different kind,
exist in almost all technical domains and constitute large domain-specific B2B
markets. The special quality in our example is only that this distribution system
is not organised in a market-like way.

Such a distribution system for Java components is Maven [12]. It is itself
a ”living” technical system developed and operated by a globally distributed
community within the Apache Maven Project.

Maven’s primary goal is to allow a developer to comprehend the com-
plete state of a development effort in the shortest period of time. [...]
While using Maven doesn’t eliminate the need to know about the un-
derlying mechanisms, Maven does shield developers from many details.
[...] Maven builds a project using its project object model (POM) and
a set of plugins. Once you familiarise yourself with one Maven project,
you know how all Maven projects build. This saves time when navigating
many projects. [12]

Maven supports the build process of a software, i.e. the production process that
produces a living application from a (component-based) software provided as a
”conditional mind game”. This production process itself is initially a ”conditional
mind game” since the instructions are first to be written down as plan,



– where to find the right components of the appropriate version in the globally
distributed structure (”resolving dependencies”),

– to upload them to the own local private Maven repository (if they are not
already there),

– do the same for the dependencies of the dependencies, etc.,
– when everything is successfully collected (deployed in the IT developers’

language), start the actual build process with the Java compiler (i.e., the
”production process” in its narrower meaning),

– if possible or required, run various specially specified tests on the ”finished
product” (i.e., provide for quality assurance),

– install it in its operating environment
– and then configure it for operation.

Afterwards this plan has to be processed with all possible pitfalls that might
occur processing a plan.

All these steps are supported by Maven, a ”command line tool written in
Java” [12] for building Java applications. The Maven engine downloaded to a
computer as a ”conditional mind game” itself is an instance of a component
of that (global and publicly available) project management system that can be
”brought to life” by a Java runtime environment. It is at the same time a ”useful
product”, a machine (the very instance that executes the ”mvn build” command)
producing a machine (the Java bytecode of the application), which itself controls
a machine as part of the control component in a real-world technical system.

As pointed out in [5], in these multiple changes from ”dead” places to ”liv-
ing” contents, the ”plug” must not only fit into the ”socket”, but the socket
must really provide the promised performance. This is itself rich of prerequisites
and requires not only the reproduction and further development of a functional
infrastructure, but also the management of the corresponding resources. The
success of Java is rooted not so much in the functional properties of the lan-
guage, compile and build tools, but primarily in the availability of components
in software libraries for a wide variety of routine tasks as pool of resources of
complicated structure. In this sense, Maven is a technical system for managing
and operating this resource pool by a socio-technical supersystem that would
not and could not function without the cooperative actions of interested and
motivated developers on its part.

Maven is not the only example and not even the flagship of such cooperatively
developed and operated component frameworks, but a typical form of coopera-
tive governance in Open Source practices, as reveals the long list of other Apache
Projects at https://www.apache.org.

4 Services

In the previous section, we analysed cooperative practices in CBSE in which the
materialisation of the component as ”living” part of a whole (the finally running
software) ultimately realises as code on a concrete computer. This code then has



to be ”put into operation”, i.e. called up by another tool, the ”operating system”
of that computer, in order to unfold the desired processual effect.

In this context the function remains bound to the tool. The independent
third party must provide the tool or at least – as in the Open Source practice
described above – support the user in producing the tool in order to apply its
main useful function to his objects (workpieces).

In a mode of production based on the division of labour, less is conceivable.
Why not ask (and pay) the third party for applying that main useful function to
the user’s objects (workpieces) with their own tools? In this way, too, the state-
changing effect is exerted on the objects in the user’s possession. At this point,
however, the function is not needed as a pure function with potential usefulness,
but as a ”living” function with a real world-changing effect, as a service of a
service provider.

We are thus getting closer to the principle of the Ideal Machine as ”a solution
in which the maximum utility is achieved but the machine itself does not exist”
[7, p. 40]. Within such a concept of services the machine remains at least invisible
to the service consumer like the origin of the flying roasted chickens in that land
of milk and honey. The problems, however, shift to the next cooperative level, to
the socio-technical supersystem in which this business relationship takes place.

Tool
Processed Object

Workpiece

Service
Provider

Service
Consumer

In fact, the essential problem of such an approach is not so much a tech-
nical as a social one. Even the minimal in the TRIZ understanding technical
system of this cooperative action extends over different areas of responsibility as
displayed in the figure above. It requires clarification how problems and errors
in the operation of such a cooperative structure are to be dealt with, who has
to compensate the damage claims, but also how the ”value proposition” [19]
resulting from the cooperative action is to be distributed.

Such a service-oriented approach [8], which software development discovered
for itself about 20 years ago with the slogan ”Software as a Service”, is, however,
much older when looking at the achievements of a networked technical world:
water comes from the tap, electricity from the socket, groceries from the mall
and Twitter messages from the smartphone. It is claimed that modern people
would have great difficulty to survive for more than two weeks if all these things
we are taking for granted were to disappear at once.

Service-oriented architectures live from the fact that the infrastructural re-
production processes of resource provision and management are organised in an



appropriate cooperative manner. Only on this viable structural basis component-
based TRIZ (and non-TRIZ) solutions are possible at all. Garrett Hardin [6]
argued that a cooperative resource management as infrastructure is alien to
the benefit maximising homo oeconomicus. The conditions for successful socio-
cultural management of resource pools do not arise on their own but must them-
selves become the target of a consciously designed cooperative systemic devel-
opment process.

References

1. Bachmann, F., Bass, L., Buhman, C. et al.: Volume II: Technical Concepts of
Component-Based Software Engineering. Technical Report CMU/SEI-2000-TR-
008, ESC-TR-2000-007.

2. Caetano, A., Ritó Silva, A., Tribolet, J.: Using roles and business objects to model
and understand business processes. Proceedings of the 2005 ACM symposium on
Applied computing (2005), pp. 1308–1313. DOI: 10.1145/1066677.1066973

3. Gräbe, H.-G., Thiel, R.: ProHEAL – Social Needs and Sustainability Aspects in
the Methodology of the GDR Inventor Schools. LIFIS Online, 15.08.2021. DOI:
10.14625/graebe 20210815

4. Gräbe, H.-G.: Technical Systems and Their Purposes. In: Mayer, O. (ed.):
Proceedings TRIZ-Anwendertag 2020. pp. 1-13. Springer Nature (2021). DOI:
10.1007/978-3-662-63073-0 1

5. Gräbe, H.-G.: Systems and Systemic Development in TRIZ. Submitted to TFC
2022.

6. Hardin, G.: The Tragedy of the Commons. Science 162 (1968), pp. 1243–1248.
DOI: 10.1126/science.162.3859.1243

7. Koltze, K., Souchkov, V.: Systematic Innovation Methods (in German). Hanser
(2017).

8. Laskey, K.B., Laskey, K.: Service oriented architecture. WIREs Comp. Stat.
(2009), pp. 101–105. DOI: 10.1002/wics.8

9. Li, J. et al. (2005). An Empirical Study on Off-the-Shelf Component Usage in
Industrial Projects. In: Bomarius, F., Komi-Sirviö, S. (eds). Product Focused
Software Process Improvement. PROFES 2005. Lecture Notes in Computer Sci-
ence, vol 3547. Springer, Berlin, Heidelberg. DOI: 10.1007/11497455 7

10. Lyubomirskiy, A., Litvin, S., Ikovenko, S., Thurnes, C.M., Adunka, R.: Trends of
Engineering System Evolution (TESE). TRIZ Consulting Group (2018).

11. Mann, D.: Hands On Systematic Innovation. IFR Press 2014.

12. Apache Maven Project. https://maven.apache.org/what-is-maven.html

13. Petrov, V.: Laws and patterns of systems development (in Russian). Independent
Publishing (2020).

14. Razzouk, R., Shute, V.: What Is Design Thinking and Why Is It Important?
Review of Educational Research (2012), Vol. 82, No. 3, pp. 330–348. DOI:
10.3102/0034654312457429

15. Ritter, S.M., Mostert, N.M.: How to facilitate a brainstorming session: The
effect of idea generation techniques and of group brainstorm after individ-
ual brainstorm. Creative Industries Journal, 11:3 (2018), pp. 263-277. DOI:
10.1080/17510694.2018.1523662



16. Shchedrovitsky, G.P.: Selected Works. A Guide to the Methodology of Organisa-
tion, Leadership and Management. In: Khristenko, V.B., Reus, A.G., Zinchenko,
A.P. et al.: Methodological School of Management. Bloomsbury Publishing
(2014).

17. Smith, H.: P-TRIZ in the History of Business Process. A BPTrends Column,
April 2006.

18. Sommerville, I.: Software Engineering. Citations based on the 8th German edi-
tion. Pearson Studium (2007).

19. Souchkov, V.: TRIZ and Systematic Business Model Innovation. In: Proceedings
TRIZ Future Conference 2010, Bergamo, Italy.

20. Szyperski, C.: Component Software. 2nd edition. ACM Press (2002).
21. The TRIZ Ontology Project. https://wumm-project.github.io/Ontology.html.


